The Mediatorless Electroanalytical Sensing of Sulfide Utilizing Unmodified Graphitic Electrode Materials
نویسندگان
چکیده
The mediatorless electroanalytical sensing of sulfide is explored at a range of commercially available graphitic based electrodes namely, edge and basal plane pyrolytic graphite (EPPGE and BPPGE, respectively), boron-doped diamond (BDDE), glassy carbon (GCE) and screen-printed electrodes (SPE). The electrochemical performance is evaluated in terms of current density/analytical signal and oxidation potential, where the GCE and SPE are found to possess the optimal electrochemical responses. The electroanalytical performance of the GCE is explored towards the electrochemical sensing of sulfide and it is found that it is hampered by sulfide passivation, thus requiring pretreatment in the form of electrode polishing between each measurement. We demonstrate that SPEs provide a simple analytically comparable alternative, which, due to their scales of economy, create disposable, one-shot sensors that do not require any pretreatment of the electrode surface. To the best of our knowledge, this is the first report using mediatorless SPEs (bare/unmodified) towards the sensing of sulfide. In addition, the electroanalytical efficacy of the SPEs is also explored towards the detection of sulfide within model aqueous solutions and real drinking water samples presenting good apparent recoveries, justifying the plausibility of this graphitic mediatorless screen-printed platform.
منابع مشابه
Utilising copper screen-printed electrodes (CuSPE) for the electroanalytical sensing of sulfide.
A mediatorless sulfide electrochemical sensing platform utilising a novel nanocopper-oxide screen-printed electrodes (CuSPE) is reported for the first time. The state-of-the-art screen-printed electrochemical sensors demonstrate their capability to quantify sulfide within both the presence and absence of an array of interferents with good levels of sensitivity and repeatability. The direct sens...
متن کاملElectroanalytical detection of pindolol: comparison of unmodified and reduced graphene oxide modified screen-printed graphite electrodes.
Recent work has reported the first electroanalytical detection of pindolol using reduced graphene oxide (RGO) modified glassy carbon electrodes [S. Smarzewska and W. Ciesielski, Anal. Methods, 2014, 6, 5038] where it was reported that the use of RGO provided significant improvements in the electroanalytical signal in comparison to a bare (unmodified) glassy carbon electrode. We demonstrate, for...
متن کاملElectroanalytical sensing of Asulam based on nanocomposite modified glassy carbon electrode
In this study a facile approach to employ Copper nanoparticle (CuNPs) and multi-walled carbon nanotubes (MWCNT) as the nanomaterial for selective detection of asulam have been investigated. This work reports the electrocatalytic oxidation of asulam on glassy carbon electrodes (GCE) modified with multi-walled carbon nanotubes (MWCNT), ionic liquids (IL), chitosan (Chit) and copper nanoparticles ...
متن کاملAnodized Edge-plane Pyrolytic Graphite for Electroanalysis of Pantoprazole in Tablet Dosage Forms and Human Urine Samples
Electroanalytical parameters of different graphitic carbon-based electrode materials were compared to select the best one for the pantoprazole electroanalysis. Such parameters include sensitivity, repeatability, residual background current, and signal-tobackground current ratio of the analytical response and such electrodes include conventional carbon-based electrodes such as glassy carbon (GC)...
متن کاملVoltammetric and Potentiometric Behavior of 2-Pyridinethiol, 2-Mercaptoethanol and Sulfide at Iron(II) Phtalocyanine Modified Carbon-Paste Electrode
A carbon-past electrode modified with iron(II) phathalocyanine (FePc) was used as a sensitive potentiometric sensor for determination of 2-pyridinethiol (2PT). 2-mercaptoethanol (2ME) and sulfide ion in aqueous solutions. The modified electrode acts as an electrocatalyst for oxidation of these compounds, and lowers the overpotential for oxidation reactions by more than 400 mV, compared to t...
متن کامل